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EFFECTS OF HEAT-TRANSFER FACTOR ON THE CHARACTERISTICS OF 

STRAIGHT FINS 

E. V. Grubskii UDC 536.244 

Published relationships for heat transfer at straight fins of constant cross section 
have been derived subject to the condition that the heat-transfer coefficient is constant over 
the surface; this is reasonably correct for fins whose performance factor is close to unity, 
but for inefficient fins the heat-transfer coefficient varies considerably on account of the 
temperature variation over the height of the fin. If this is neglected, the calculated heat 
transfer may differ from the real case. 

To determine the errors that can occur in the design of heat-transfer devices we have 
examined the heat transfer from straight fins of constant cross section on the basis of vari- 
ation in the heat-transfer coefficient along the fin. 

The variation in the excess temperature along a fin is represented as the differential 
equation 

d~O 
dx2 = n l O ~ +  n20, (1) 

where n~ and n= are quantities dependent on the heat-transfer conditions, while O is the 
excess temperature in degrees at a distance x from. the base. 

The solution to (i) is obtained as a Maclaurin series: 

X X 2 X 3 X 4 

o (x) = o (o) + ,---o'(o)§ o " ~  z: (o) + - ~ .  o'" (o) + ~ o~V (o) + . . .  (2) 

We assume that O = 0st at x = O, and get after replacing the derivatives that 

2 ~2 2 n, (olt ~ )  + n~(Ost - o~) + ~ (,,~Ost + ,~,) %t ~: O = O st • x 

X$ -Vr~.3 • T, (2~,o~+~=) ,~(oI~_~+~=(oI~_oI)  + 

X4 + ~  

n,Ost (naOst -~- he)} • . . . .  + 

where 0st and O h are the excess temperatures at the base and at the end of the fin, both in 
degrees. 

The excess temperature at the end of the fin is gJven by (3) with x = h. 

The heat dissipated by the fin is determined from the condition that the heat lost is 
equal to the heat coming into the base: 

(3) 
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Q=- t --g- * (4) 

where ~. is the thermal conductivity in W/m'deg and f is the area in m 2 of the base perpendi- 
cular to the heat flow. 

We have used these relationships to examine the cooling of a straight fin with a laminar 
flow of air with free convection; the range in O was 20-130 ~ for I _< i m. 

The calculations for this case showed that low values were obtained if the heat-transfer 
factor was assumed to be constant; this was particularly so for low-performance fins. If the 
performance factor was 0.3, calculations from formulas neglecting variation in the factor re- 
duced the result by about 9%. 

If the performance factor was over 0.6, which is most characteristic of heating plants, 
the error did not exceed 4%, so the error can usually be neglected for simple cases and the 
ordinary formulas can be applied without considering the variation in the heat-transfer fac- 
tor. 

Dep. 712-75, January 13, 1975. Original article submitted June 24, 1974. 

MECHANICS OF A PHASE INTERFACE 

E. V. Veitsman UDC 532.6+541.12.012.6 

Comparison has been made of two differential equations for the interphase region between 
the one-component liquid and the vapor or a Solid and the vapor, using the potential ~ of 
the intermolecular forces (linear case, equilibrium or stationary state): 

,~- ,/~ = 4~kp (~), (I) 

=4~kp(x) exp �9 ' x>0: ~--*. 

Equations (i) and (2) are based on interactions of the following form: 

[ ! . e x p  - - - - ~ -  

F = kmlm 2 R--- ~ + 3X ~ , 

(2) 

(3) 

1 1 1 
F = kmlm, -~-(--R- + "-f-) exp (-- -~-) , ( 4 )  

where  t h e  p o i n t  masses  ml and ma a r e  e f f e c t i v e  ( c o n d i t i o n a l )  q u a n t i t i e s ;  t he  volumes of  
t h e s e ,  and t h e  d i s t a n c e  R be tween  them,  a r e  much l e s s  t h a n  t h e  volumes  of  r e a l  m o l e c u l e s  
or  atoms and t h e  mean d i s t a n c e  be tween  such p a r t i c l e s .  I t  i s  found t h a t  (2) d e s c r i b e s  ~ more 
closely. Variational methods (~ = 0) give 0 = p(x) (see~ for example, [i]) and ~ = ~(X); 

= - 4 ~ k ~ p  (x). ~ ( 5 )  

In the case of (i) p = p(x) may have a solely linear result. 

A more complex case has also been considered, namely, a two-component solution, with the 
solute a surfactant (solutions of 0, N, and S in molten iron). Figure i shows curves for 
the solvent Os and impurity Pi' and also for the forces F s and F i acting on the substances. 
These indicate the conditions under which the problem may be solved. We assume that the 
boundary points for the interphase region virtually coincide for the two substances. 

As a result we have (equilibrium, stationary state): region II; 6~2 = 0 

x k s  ~---'---~-2 ~ ,  ~) s in  x �9 l 2 
Pi (~)=~, 2-(~,~-pi,~) l-~ ~ & (pi,,- x,VT' ~, -2~VE (6) 
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Fig. i. Curves for the con- 
centration (top) and forces 
acting on the solute in the 
interphase region (equilibri- 
um). The broken vertical 
line on the left is the 
boundary of the region with 
respect to the solvent, i.e., 
for the case where this bound- 
ary does not coincide for the 
two substances: a) surface 
layer of liquid phase (re- 
gion I); b) surface layer of 
gas phase (region II). 

(7) 

(8) 

~)s' ~ . . . .  4nks,s ~2e, s 9s (x); ~ i ,  t := ~- 4a'ke, i ~2e, iPi (x). 

(9) 

(i0) 

For the surface tension 

4n~ 4 ~  9 
a = ol + % __ 4n k~t., ~4(~ 2 -- Pi,  ,~)" + Z-~ ( ~ ' ~  - -  O i, ~)~ + T Ps, ~ 4-, 

, 8nl~ 

~- t--T- % "  (Pi '~ - Pi, ~) ( 1 1 )  

The quantity Pi,a may be determined from the condition 30/ 
3Pi 2 = o, and also by using the adsorption F i as found by experi- 
ment: 

ff_i__4_119i, x + 12P i , .~ 
P i ,  2 =  AL - -  ffA-L- " " (12) 

A test has been made on (ii) for the simplest case, and the 
results were satisfactory. 

NOTATION 

%, %s, %s,i, and %s s, screening constants; k, ks, ks,s, and k C i' constants representing 
the interaction of the e~fective point masses; a and B, functions of'the previous quantities; 
o, surface tension; AL = Ix + l=, thickness of surface layer; F, interaction force between 
ml and ma; p(x), density, p2 = ps + Pi" 

I. 
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TEMPERATURE DISTRIBUTIONS IN LAYERED BODIES 

K. V. Lakusta and M. P. Lenyuk UDC 517.946 

A one-sided bounded stratified body 

n - = { ( x , z ) , - - ~ < x < a , O < z < / }  
with continuously distributed heat sources, whose density is f(1)(x, z, t), and whose temp- 
erature ~(1)(x, z) begins to propagate with speed ~(1)(x, z), is brought into contact with 
a one~sided bounded stratified body 

n * =  {(x, z), a < x < + ~ o ,  O ~ z < t }  
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with continuously distributed heat sources, whose density is f(2)(x, z, t), and whose temp- 
erature 4 (2) (x, z) begins to propagate with speed ~(2) (x, z). Theheat-wave propagation speeds 
in the two bodies are finite. 

If we denote the temperatures of the bodies by u (i) (x, z, t)(i = i, 2), then the term- 
ination of the temperature distributions amounts to solving the following: find a bounded 
solution to the following system of equations [i]: 

b2 a2uO) o auO) (a2uo) a2u~ ] = fO) (x, z, t)  ( i )  

(O ~ t.~< T, (x, z) Ffll-), 
O~u(2) Ou@) / 02u(~) 02u(') \ 

b~ Or---- ~ + ~ Ot --a~ l--~x~ +--~z~ ) = f(') (x' z, t) (2) 
(0 ..< t ~ T, (x, z) C1-1+), 

that satisfy the conditions 

OuO) 
uO} It=o = ,0) (x, z). , TLt=o  

Ou@) 
u(2) t=,  = ~(~) (x. z). ~ t=o 

= (pO) (x, z) (x, z) ~ / / - ,  

=q)(~) (x, z) (x, z) C/-/+, 

(3) 

(4) 

(5) 

ud)Iz:o = O, ud)lz=l = 0 (i : 1,2). (6) 

An approximate analytical solution has been constructed by the straight-line z method 
and Laplace integral transformation with respect to t. 

In particular, for cI § 0 and c2 § 0 an approximately pure wave-temperature distribu- 
tion is obtained, while for bl § 0 and bm § 0 one gets an approximately ordinary (parabolic) 
temperature distribution in a two-layer body. The latter coincides with a standard result 

[5]. 

LITERATURE CITED 

I. A~ V. Lykov, Theory of Thermal Conduction [in Russian], Vysshaya Shkola, Moscow (1967). 
2. V.N. Fadeeva, "The straight-line method applied to some boundary-value problems," 

Trudy Mat. Inst. im. V. A. Steklova Akad. Nauk SSSR, 2_88 (1949). 
3. G.E. Shilov, A Second Special Textbook on Mathematical Analysis [in Russian], Nauka, 

Moscow (1965). 
4. V.A. Ditkin and A. P. Prudnikov, Handbook on Operational Calculus [in Russian], Vys- 

shaya Shkola, Moscow (1965). 
5. Ya. Erbekov, in: Computational and Applied Mathematics [in Russian], No. i0 (1972). 

Dep. 715-75, January 24, 1975. Original article submitted March 19, 1974. 

1 0 8 0  



A METHOD OF MEASURING THE BULK SPECIFIC HEAT OF A SOLID OR POWDER 

AS A FUNCTION OF TEMPERATURE 

O. Yu. Kotsyubinskii, E. S Zal'tsman, and V. S. Stepanov UDC 536o21 

The temperature distribution in a semiinfinite body of initial temperature T O is de- 
rived for the case where the surface temperature suddenly rises to T s and subsequently remains 
constant; this is described by a generalized curve in the coordinates temperature T and param- 
eter z = x/2C~-T, where x is a distance of a point from the surface and �9 is the time from 
the onset of heating. 

We split up the range from T s to To into m arbitrary sections and assume that within 
each section the specific bulk heat capacity is linearly dependent on temperature; then the 
actual temperature dependence of the specific heat is replaced by a broken line, which can 
approximate the true curve as closely as may be desired. 

Then simple transformations give an expression for the mean specific heats C c (T i) in 
the range from To to Ti: 

c~ (TO = 2--r  (V--To)lc~(rk-o(rh--r)+ C~ ( r ~ ) ( r - r k _ ~ ) !  ~V - -  

~=l r .~ - -  ( r k - -  rk-~)  

r O (T--T~ C ( r - - r ~  
--Cc{Ti_l)  {dT~ t dT . - - - -  dT, 

ri- l - ~ ) ~ z  (Ti--Ti-1) J - -  ( T  i - T~_~) ri.1 \ dz / 

(i) 

where Qi and (dt/dz) are, respectively, the amount of heat absorbed by unit surface in time 
and the derivative of the T vs z curve constructed for the case where the surface is main- 

tained at a constant temperature T i. The generalized T vs z curves for each T i have been 
constructed from the readings of 6-8 thermocouples set up within the specimens. The bulk 
specific heat of the material at room temperature may be derived from published data or by 
any standard method. 

The mean specific heats given by (I) are used to derive the true specific heats from 
i-l 

(Ti--T~ - -  Z [C~Th) "q- C (Th_ 1)](T ~ - -  Th-1) 2Cc(T~) 

C ( T 0  = k=~ .C(T~_~), (2 )  
Ti -- Ti -1  

where C(Ti), C(Tk) , C(Tk_I) are true values for the bulk specific heat at the corresponding 
temperatures. 

The accuracy of the C(T) calculations was checked by computer means; it was found that 
the overall error from replacing the true curve by a broken line did not exceed 5-10%, nor 
did the error of calculation. 

The method gives a fairly simple and reliable means of determining the bulk specific 
heat as a function of temperature; in particular, it can be used to determine the tempera- 
ture dependence of the specific heat for moulding sands. 

Dep. 709-75, January 13, 1975. Original article submitted December 25, 1972. 
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SPEED OF A GAS OR LIQUID BUBBLES IN A LIQUID'FILLED TUBE 

Yu. L. Sorokin, O. L. Anisimova, and 
L. N. Demidova 

UDC 532.529.5 

Measurements made on vertical glass tubes of various diameters and lengths 1.2-1.5 m 
on air bubbles in various liquids and bubbles of liquids in liquids have been used with data 
fromother sources to derive a general relationship for such motion: 

where 

w=up[ g/~(P'~-P")];/2, 

p = 1 -- .61 Jr 1.084 (we-';) 0,61 -J- 1.084 (we'-4) " 

(i) 

Formula (i) has been derived from general assumptions, in particular, the relation between 
the speed in an unbounded volume and in a tube, 
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Fig. i. The Re dependence of u. Our results for air in 
liquids: i) Glycerol; 2) isoamyl alcohol; 3) TKP-22 oil; 4) 
isopropanol; 5) CCI~; 8) water; 9) tetrabromoethane; water 
rising in: 6) CCI~; CCI~ falling in: 7) water. Data from 
White, Bedmore, Dumitrescu, Davis, Taylor, Griffiths, Wallis, 
and others: air in liquids: 10-13) water; 14) aqueous sugar 
solution; 15) Tellus oil; 16 and 17) glycol solution; 18) 
Voluta oil; 19) glycerol; 20) ethanol; 21) aqueous sugar 
solution; 22) ethylene glycol; 23 and 24) dilute sugar sy- 
rup; 25) sugar syrup; large air bubbles in liquids: 26) 40% 
acetic acid solution; 27) ethyl ether; 28) 27% ethyl ace- 
tate in cotton oil; 29) 40.9% ethyl acetate in cotton oil; 
30) aniline; 31) methanol; 32) 10% acetic acid; 33) 31.1% 
acetic acid; 34) butanol; 35) ethyl acetate; 36) nitroben- 
zene; 37) pyridine; 38) 70% acetic acid; 39) isopropanol; 
40) acetic acid. I) curve calculated from (I). 
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w = w| I- (2) 

and the empirical relationship 

D 0,39 
DI_ t - -  0,61 q -  1.084(We_4- ~ . ( 3 )  

It follows from (3) that for We § ~ (tubes of large diameter) D/D t ~- 0.61, which corresponds 
to Dumitrescu's measurements. For We = 4, D=Dt, andneither riseof thebubblenorescapeof the 
liquid from the open end will occur, which is in accordance with a theoretical solution due 
to Maxwell and Gibson and is confirmed by experiments by Duprets and others. 

Figure 1 shows the data processed as u = f(Re); it is clear that for Re > i00; We > 60; 
[(p' --p")/pt]i/2 ~- i, u = 0.707; p = 0.49 or up = C = 0.345. 

Under these conditions (i) is identical with Dumitrescu's formula for the rate of rise 
in large tubes, and the latter is to be considered as a particular case of (!). 

For Re < 2, u = 0.18 R~e or 

4 41 
3u~ - ~ - ~e (4) 

In accordance with the Stokes solution, which applies for a sphere moving in a large 
volume, ~ = 24/Re; this value differs from (4) by a constant factor, which is due to the 
special features of a bubble rising in a tube. 

The analysis indicates that there are no essential differences between liquid--liquid 
and liquid--gas systems, and that the two can simulate one another at least in the range of 
parameters used. 

NOTATION 

w, speed of drop or bubble relative to tube wall in immobile liquid, m/sec; w~, speed 
of large bubble (drop) in large volume, m/sec; Dt, internal diameter of tube, m; D, diameter 
of spherical drop (bubble), m; g, acceleration due to gravity, m/sec2; C, coefficient; P', 
density of heavy phase, kg/m3; 0", density of light ~e, kg/m3; Pi, density of surrounding 
medium, kg/m~; ~, hydraulic-resistance factor; u = ~4/3~; a, surface tension, N/m; ~, kine- 
matic viscosity of surrounding medium, m2/sec; We = D~g(0' -- 0")/0, Weber number; Re = wDt/~ , 
Reynolds number. 

Dep. 710-75, December 30, 1974. Original article submitted September 16, 1974. 
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